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It was recently suggested that transient dynamical properties were of some use 
to predict equilibrium critical properties of 2D and 3D models of statistical 
mechanics on the lattice. We investigate such dynamical properties for three 
related models with competitive interactions, namely the ANNNI model, the 
brickwork model, and the BNNNI model. In spite of known differences in their 
equilibrium phase diagrams, our simulations display similar transient dynamical 
behaviors for all three models. The reliability of this method for probing 
equilibrium properties seems therefore questionable even for rather simple 
magnetic models without any structural disorder. 

KEY WORDS: Phase transitions; dynamics; ANNNI model; Monte Carlo 
method. 

1. I N T R O D U C T I O N  

Recently,  a new dynamica l  me thod  was p r o p o s e d  for p rob ing  phase  
d i ag rams  in s tat is t ical  mechanics.  (1) I t  is g rounded  on the idea tha t  
c o m p a r i n g  the evolut ion,  for the same sample  of the the rmal  noise, of two 
dis t inct  init ial  conf igura t ions  of the system m a y  given some insight  on the 
phase  d iagram.  At  high tempera ture ,  the system rap id ly  forgets its init ial  
cond i t ion  and  consequent ly  the d is tance  between the two conf igura t ions  
rap id ly  vanishes (p rov ided  the dynamica l  behav io r  is no t  chaotic) .  O n  the 
con t ra ry ,  at  low tempera ture ,  the system is general ly  in a phase  where 
several  valleys coexist;  the two conf igura t ions  m a y  then be t r a ppe d  in dif- 
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ferent regions so that their distance will never vanish. However, few exact 
results (2) have been established so far which connect these transient 
dynamical properties and the equilibrium phase diagram of the system, 
relating changes of dynamical regime to phase transitions. If such a link 
was established, one could then rely on less time-consuming simulations 
than the standard Monte Carlo methods to study the equilibrium proper- 
ties. 

A priori the long-time behavior is not related in a simple way to short- 
time properties and an appropriate validity criterion for applying the above 
method is lacking. However, analytical studies of a class of mean field 
models(3 6) have shown that this method can predict correctly the (mean- 
field) phase boundaries at equilibrium. Moreover, for 2D and 3D nearest- 
neighbor Ising models, the results derived from such simulations are also 
in very good agreement with the known location of the ferromagnetic- 
paramagnetic transition. The q-state standard Ports model is also well 
behaved in this respect (at least for q = 3, 4, 5). (7) On the other hand, the 
reliability of this new method for testing the equilibrium phase diagram of 
more complex models (3D spin glass, ~3) X Y  model (7)) remains more ques- 
tionable. One should nevertheless note that even if a reliable estimate for 
the 3D spin glass was not found by this method, it has been suggested that 
the "distance method" is suitable for giving more insight into the phase 
diagram properties of spin glasses and for finding evidence of an Almeida- 
Thouless line in finite-dimensional systems. ~ 

Barber and Derrida (~~ have recently studied the ANNN! (axial 
next nearest neighbor Ising) model. Their conclusions were that the 
ferromagnetic and paramagnetic phases as well as an antiphase could be 
identified within this approach. They also suggested that some features of 
the observed dynamical behavior were related to the floating phase of the 
ANNNI model. However, the extension of this floating phase was 
significantly larger than in other works. (H'12) The main goal of the present 
paper is to study and compare the transient dynamical behaviors of three 
different models, namely the ANNNI model, the brickwork model, and the 
BNNNI (biaxial next nearest neighbor Ising) model (see Section 2 for the 
precise definition of the models). These three models pertain to the same 
class (competing interactions, no structural disorder), but display 
significantly different physical properties, thus providing a good testing 
ground for the above method. The brickwork model is a modified version 
of the ANNNI model. It turns out to be exactly solvable (13'14) and one can 
show rigorously that no floating phase exists in this model, It was 
previously used to check indirectly the validity of the conventional Monte 
Carlo simulations of the ANNNI model. Monte Carlo simulations of the 
brickwork model were shown to exhibit metastability, which led to a 
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spurious similarity with Monte Carlo simulations of the ANNNI 
model. (14'151 The BNNNI model is an isotropic version of the ANNNI 
model. The very existence of a floating phase for this model is still a subject 
of controversy. As will be shown in this work, all three models display 
fairly similar transient dynamical behaviors (see Section 3 for the descrip- 
tion of the method and Section 4 for the results) in spite of the differences 
in their equilibrium phase diagrams. The strong connection between the 
transient dynamical behavior and the equilibrium phase diagram which 
was observed in simple models is no longer present. As advocated in the 
conclusion, as soon as the model presents nontrivial phases (due to com- 
petition or frustration, for instance) the connection between transient and 
equilibrium properties becomes quite loose, which impairs the confidence 
one can have in this dynamical approach for probing thermodynamics. 

2. T H E  M O D E L S  

In this section we recall the definition of the three models we study in 
the following (see also Fig. 1). We consider N x N  Ising spins Si, j 
(i = 1,..., N; j = 1 ..... N) (Si, j = +_ 1) on a square lattice. The usual ANNNI 
model is then described by the Hamiltonian 

H = - J x  ~ (SuSi+ 1,y + Si, jSi, y+ 1) - J2 ~, Si, jSi+ 2,j 
i,j i,j 

J1 is a ferromagnetic coupling, J2 an antiferromagnetic coupling, and the 
positive parameter ~c = -J2/J1 quantifies the competition between the two 
interactions. A complete report on the properties of this model can be 
found in Selke's review. (.6) Let us recall the main features of the phase 
diagram. For 0 < ~ < 0.5 the low-temperature phase is ferromagnetic and 
the high-temperature phase is paramagnetic. For ~>0.5  the low- 
temperature phase is an antiphase, whereas at high temperature the system 
is in a disordered phase; these two phases are separated by a floating phase. 
Moreover, a disorder line splits the disordered phase. 

A modified version of the ANNNI model is the so-called brickwork 
ANNNI model. It is governed by the following Hamiltonian (N is assumed 
even): 

N--1 N/2 N N/2--1 

i = 1  j = l  i - 1  j - - 1  

N N/2 1 N N/2 

- -  J2 2 Z Si ,2jS2,2j  + 2  - -  J3 ~ ~ S i ,2 j_  l Si,2j 
i 1 j = l  i - 1  j ~ l  
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Fig. 1. Definitions of the three models; the different kinds of couplings (between nearest 
neighbors or next nearest neighbors) are indicated. (a) ANNNI model, (b) Brickwork model, 
(c) BNNNI model. 
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Basically, this model is related to the standard ANNNI model by sup- 
pressing every second vertical coupling and strengthening every second 
horizontal coupling, as shown in Fig. 1. The partition function can be 
calculated exactly using a standard dimer method. The phase diagram has 
been proposed by Beale et al. (12~ (see Fig. 8 in that reference) for J3 = 2Jl- 
It exhibits just order-disorder transitions without any intermediate floating 
phase, in contrast with the standard ANNNI model. 

The third model we investigate is the BNNNI model. It can be 
deduced from the ANNNI model by adding a next nearest neighbor inter- 
action on the second direction, thus restoring the isotropy of the model. 
The equilibrium phase diagram of this model is still a matter of con- 
troversy. The first Monte Carlo simulations made by Hornreich et al. (~7) 
and Selke and Fisher (~8) seemed to indicate the existence of an incommen- 
surate phase for ~ > 0.5. However, more recent simulations (19) suggest that, 
instead of a two-transition scenario, only one (first-order) transition leads 
from the ordered (chessboard) phase to the disordered phase. More 
recently the problem of the very existence of a floating phase was recon- 
sidered by Oitmaa and Velgakis (2~ (using series expansions), Velgakis and 
Oitmaa (19) (via Monte Carlo simulations), and Oitmaa et al. (22~ (by finite- 
size study). The conclusions of these works rather supported the existence 
of a floating phase, although it was impossible to decide unambiguously. 4 

3. THE S I M U L A T I O N S  

We now describe the method used for the simulations and define the 
quantities we measured. We consider N =  L 2 spins. In order to ensure an 
efficient vectorization of the code, the lattice was chosen as follows. 
Duplicating the N spins leads to a rectangular lattice of size L x 2L with 
the L-periodic horizontal conditions: Si, j =  Si, j+ L. Moreover, we impose 
periodic boundary conditions on this new lattice, It is then allowed to 
update at the same time all the spins located on the diagonal defined by 
i = j + k for given k (k = 1 ..... L), as these spins do not interact directly. In 
the following, a time step of the simulation will therefore correspond to the 
sequential update of the L different diagonals. 

As in Barber and Derrida, (1~ the dynamical evolution of the system is 
based on a heat bath algorithm. To update the spin Sz, j at time t + dt 
(dt-= 1/L),  one first computes the local field h~,j(t) at time t. One then 
chooses S~,s(t + dt)  to be _+ 1 with probability 1/2 + tanh[h~. j ( t ) /T] .  To 

4 In the problem of the 3-state chiral Potts model, a study based on Monte Carlo simulations 
and partial analytical results also supported the idea of a floating phase, even in the case of 
isotropic interaction. (23) 
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compare the relative evolution of two different initial configurations 
{Si, j(0)} and {S;,j(0)} for the same sample of the thermal noise, we 
update the two corresponding configurations at time t {S~,j(t)} and 
{Si, j(t)} according to 

Si, j(t + dt) = sign[ 1/2 + 1/2 tanh h~.j(t)/T- z~,./(t)] 

Si;j(t + dt) = sign[ 1/2 + 1/2 tanh h~,j(t)/T- z~,j(t)] 

where zi, j(t) is a random number (the same in both equations) uniformly 
distributed between zero and one. 

Several quantities can be used to characterize such a relative evolution. 
The first one is a Hamming distance D(t) between the two configurations 
at time t: 

D(t) = 1 /4N~  [Si, ,(t) - S'i,j(t)-] 2 

Here the sum is extended over the whole lattice and D(t) ranges between 
0 and 1. The survival probability P(t) is computed to be the fraction 
(averaged over noise) of initial conditions for which the two configurations 
are still different at time t. 

We also examined the behavior of other quantities, such as the 
probability P,(e) that at time t the two configurations are at a distance 
smaller than e. 

The initial configurations considered in this work will be two types: a 
first group of simulations will be done with two different configurations 
chosen among the ground states of the model. The results thus obtained 
will be compared with simulations starting from configurations chosen at 
random under the constraints S~,j(0)= -Si ,  j(0). 

4. RESULTS 

4.1. The A N N N I  Mode l  

We considered three different values of K, namely x =0.1, 0.2, 0.8, and 
a lattice of size L = 32. The averaging was performed over 100 samples of 
the thermal noise. The dynamical evolution starting from ground-state 
initial conditions (ferromagnetic states for K<0.5  and antiphase for 
~c > 0.5) was stopped after to = 500 steps and we focused on the temperature 
dependence of P(to) and D(to) (results are displayed on Figs. 2a-2c). 

For  x=0 .1 ,  P(to) displays a sharp drop for T~2.1 ,  which is also the 
temperature at which D(to) begin to decrease rapidly. Three different 
regimes can be seen in the behavior of D(to). For 0 < T <  1.8, D(to) remains 
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close to unity, D(to) then decreases rapidly in the range 1.8 < T <  213, and 
for T>2.3 ,  D(to) vanishes. This behavior is very slightly affected when 
increasing the size of the system, averaging over a larger set of samples, 
and choosing a larger time to. The transition temperature T ~ 2 . 2  
[observed for both P(to) and D(to)] is in good agreement with the 
temperature of the ferromagnetic/paramagnetic transition as reported by 
Final and de Fontaine. (24) 

For K = 0.8, the situation seems rather different. Indeed, in this case an 
additional regime where D(to) decreases slowly and roughly linearly is 
observed in a large range of temperatures (1.7< T < 3 ) .  It should be 
noticed that the drop in P(to) does not coincide with the onset of this 
regime; indeed, P(to) remains close to unity in much of this intermediate 
domain. 

On the basis of very similar results and of a comparison with the 
mean-field phase diagram of Finel and de Fontaine, ~24) Barber and 
Derrida (1~ suggested that this intermediate regime was a signature of the 
floating phase of the ANNNI model. Indeed, the temperature of the sharp 
drop of D(to) is very close to the critical boundary separating the antiphase 
and the floating phase for ~ = 0.8. As already noted by Barber and Derrida, 
this intermediate regime seems to end at a temperature which exceeds by 
about 20 % the value proposed by Finel and de Fontaine for the transition 
to the completely disordered phase. In addition, the sharp drop of P(to) 
at T~ 2 . 5  (a value close to the temperature proposed by Finel and 
de Fontaine for the floating/paramagnetic transition) is located in the 
midst of the intermediate region. Thus, the determination of the extent of 
the floating phase is not deprived of ambiguity and it is even possible that 
the linear decrease of D(to) is not uniquely related to the existence of the 
floating phase. 

The situation for ~ =0.2 is even less clear (see Fig. 2b). The behavior 
seems qualitatively similar to what we observed for ~c = 0.8, except for the 
much smaller extension (T ranging from 2 to 2.4) of the intermediate 
region where D(to) slowly decreases. 5 Note that this intermediate regime 
can also be found in the results of Barber and Derrida. (1~ These authors 
argued that this was due to some finite-size effect in the critical region. 
However, increasing the size of the lattice up to L = 128, we found that the 
intermediate regime was persisting and almost no change was visible in its 
domain and its slope (Fig. 2b) (note that in our simulation L = 128 means 
128x128 spins; hence the lattice is larger than the one with the 
corresponding L in ref. 10, which would have 128 x 64 spins). 

5The existence of such an intermediate region cannot be ruled out for ~=0.1, but its size 
would be very small and the conditions of the present simulations cannot lead to a definitive 
conclusion. 
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Fig. 3. The ANNNI model: Comparison of D(500) for ground-state (open squares) and 
random (crosses) initial conditions for • = 0.8 and L = 64. Other parameters are as in Fig. 2. 

For  obtaining additional information on the location (and nature) of 
the first transition we compared the behaviors of D(to) for the two sets of 
initial conditions defined in Section 2. Indeed, in a stable or metastable 
low-temperature phase one should expect drastic differences between 
starting from random states and zero-temperature equilibrium states; on 
the other hand, at high temperature these equilibrium states no longer play 
any specific role. Hence, both types of initial conditions should then lead 
to the same behavior. The results we obtain (see Fig. 3) confirm that the 
first characteristic temperature [where D(to) starts to decrease] is indeed 
related to the disappearance of the low-temperature phase. 

4.2. The  B r i c k w o r k  M o d e l  

We studied the brickwork model for J3  = 2J1. The known exact results 
for this choice of parameters are given in ref. 10 (see Fig. 8 in that paper). 
Our  simulations display the following features. For  ~ = -J2/J1 =0.1 and 

= 0.2 no intermediate regime exists. For  instance, for I< = 0.2 (Fig. 4a) the 
characteristic temperature where P(to) and D(to) drop off is T ~  1.8. This 
is in a pretty good agreement with the exact value for the ferromagnetic/ 
paramagnetic transition. 

For  ~c=0.8 (Fig. 4b), D(to) displays an intermediate regime quite 
similar to the intermediate regime of the A N N N I  model. At first sight this 
comes as a surprise in view of the absence in the brickwork model of a 
floating phase and even of any phase transitions other than of the 
ferromagnetic/paramagnetic type. This numerically observed behavior 
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seems not to depend on the size of the lattice. We checked that in simula- 
tions of sizes up to L = 128 (see Fig. 4b), this intermediate regime occurs 
in almost the same range of temperature (T between 1.7 and 2.3). We also 
checked that increasing the duration of the simulation up to t = 10,000 time 
steps Caused no significant changes in this intermediate regime. Moreover, 
the disappearance of the low-temperature ordered phase at T ~  1.7 is 
confirmed by the comparison of the curves obtained for ground-state and 
random initial conditions (see Fig. 5). 
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Fig. 4. The brickwork model: Temperature dependence of the Hamming distance 
DUo = 500) (open squares) and of the survival probability P(t o = 500) (black diamonds) for 
ground-state initial conditions and different values of ~c (simulations were performed for 
L = 6 4  with averaging over 100samples) .  (a)  ~ = 0 . 2 ,  (b) ~ = 0 . 8 .  The Hamming distance 
(crosses) and the survival probability (open triangles) at time to = 250 for L = 128 are also 
displayed. 
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random (crosses) initial conditions for • = 0.8. Other parameters are as in Fig. 4. 

We therefore suggest that such an intermediate dynamical regime 
indeed exists in the brickwork model and is no artifact of our simulations. 
It would be tempting to identify this intermediate regime not with a float- 
ing phase, but with the q = 1/4 modulated region of the equilibrium phase 
diagram. However, it seems to extend well above the q =  1/4 regime 
proposed by Beale et al. (12) Nevertheless, it is possible that such a "phase" 
affects the transient dynamics beyond its equilibrium range. In such a case, 
a new dynamical criterion to characterize a floating phase and to 
distinguish it from a modulated regime would be required. Indeed, if this 
hypothesis was true, this would entail that the dynamical quantities we 
used are equally sensitive to true thermodynamic phase transitions as well 
as nonsingular changes in the system properties (such as in the oscillations 
of spatial correlations). 

4.3. The  B N N N I  M o d e l  

The very existence of a floating phase for the B N N N I  model, even for 
~c > 0.5, is still controversal, as conventional Monte Carlo simulations and 
such techniques as high-temperature expansions or transfer matrix methods 
give ambiguous results. On the other hand, an intermediate regime clearly 
stands out in our simulations even for ~c = 0.2. 

We first discuss the simulations with L = 32 and ground states of the 
"checkerboard" type as initial conditions. For ~ = 0.1, P(to) and D(to) both 
present a sharp decrease near T ~  1.8 (see Fig. 6a). This last value agrees 
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averaging over 100 samples). (a) K = 0.1, (b) K = 0.2. 

well with the cri t ical  t empera tu re  p roposed  by O i t m a a  and  Velgakis  (2~ 
from series expansions:  To=  1.8. A na r row in te rmedia te  regime might  
exists, but  we could  not  reach any definitive conclusion.  

The s i tua t ion  is clearly different for ~c = 0.2, as the behav ior  of  D(to) 
displays  a wide in te rmedia te  regime, as shown on Fig. 6b. The first d r o p  of 
this quan t i ty  occurs for T =  1.4 [on  the o ther  hand,  the bru ta l  decrease of 
P(to) occurs in the mids t  of this in te rmedia te  region at T = 2 . 1 ] .  
C o m p a r i n g  these results with those ob ta ined  for r a n d o m  initial  condi t ions  
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(see Fig. 7) and recalling that the numerical value proposed by Oitmaa et 
a/. (22) for the critical temperature is T~,(0.2)= 1.41, one would be tempted 
to identify the onset of the intermediate regime with the equilibrium phase 
transition. However, the meaning of the intermediate regime is still quite 
obscure, as an intermediate floating phase seems very improbable for 
~c = 0.2 in the light of previous results. (2~ 22) 

5. C O N C L U S I O N  

In this work we compared the ANNNI model, the brickwork model, 
and the BNNNI model with respect to some of their transient dynamical 
properties. The analysis has been carried out on the basis of the 
comparison of the temporal evolution of two initial conditions submitted 
to the same thermal noise. We saw that the Hamming distance DUo ) 
between the two configurations measured at some fixed time t o depends on 
the temperature and that at the ferromagnetic/paramagnetic transition of 
the three models DUo ) displays a sharp drop. However, in contrast with 
the suggestion of Barber and Derrida, (1~ the identification of the floating 
phase in the ANNNI model on the basis of DUo) remains far from 
unambiguous. Indeed, all three models display very similar intermediate 
regimes, while it is well known that no floating phase exists for the 
brickwork model and the existence of a floating phase is far from being 
established for the BNNNI model. 

One could think of the survival probability P(to) or the distribution 
function P,0(~) (defined in Section 3) as giving other helpful criteria for the 
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localization of the phase transitions. Indeed, in all the models we studied 
P(to) displays a sharp drop when the temperature is increased. Except in 
the case of the 2D Ising model, this occurs at a significantly higher tem- 
perature than the drop of D(to). For the ANNN! model this could be 
related to the occurrence of the floating phase and the sharp drop of the 
survival probability might indicate the transition to the high-temperature 
disordered phase. However, the brickwork model displays the very same 
behavior, although no floating phase is present. Therefore no reliable iden- 
tification of such a behavior with some true thermodynamic phase seems 
possible. In addition, we cannot identify unambiguously the observed 
behavior with the q = 1/4 regime (at equilibrium) of the correlation func- 
tion, since the brickwork model displays strong metastability and freezing 
effects ~15) and transient quantities such as P(to) are, by their very definition, 
sensitive to such nonequilibrium phenomena. The consideration of Pro(e) 
did not yield significant new information in this respect. 6 

In view of these results, we conclude that there is a low efficiency of 
this method for predicting phase diagrams. One basic and obvious problem 
is that no characteristic time a priori exists for distinguishing between 
"spurious" transient behavior and an "equilibrium-like" dynamical regime. 
Therefore the only a priori possible definition for the observation time to 
should be the unique characteristic time of the problem, namely the 
equilibrium time. Of course the same problem for choosing the observation 
time range appears if one considers the temporal dependence of dynamical 
quantities rather than their behavior at fixed time. Moreover, there is in 
general no clear correspondence (if any) between an observed dynamical 
regime and equilibrium phases (apart from the critical slowing down which 
characterizes transitions between phases). 

However, limiting the scope of these ideas can give grounds for more 
optimism. For  mean-field models (at least with no structural disorder) the 
equilibrium phase transition corresponds also to a change in the transient 
behavior. In addition, it seems that in all the models studied up to now 
such a change always accompanied the transition from the low-temperature 
phase. 

6 One can also define ~7) a response function as the derivative of D(to) with respect to an exter- 
nal magnetic field. In the case of the Ising model this quantity displays near the critical 
temperature a sharp peak reminiscent of the susceptibility divergence at T c. This feature is 
also found in the ANNNI model at the transition from the low-temperature phase. However, 
this does not provide a new characterization of the intermediate regime. 
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